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We present a robust second-order accurate method for discretizing the multi-dimensional
Heaviside and the Dirac delta functions on irregular domains. The method is robust in the
following ways: (1) integrations of source terms on a co-dimension one surface are inde-
pendent of the underlying grid and therefore stable under perturbations of the domain’s
boundary; (2) the method depends only on the function value of a level function, not on
its derivatives. We present the discretizations in tabulated form to make their implemen-
tations straightforward. We present numerical results in two and three spatial dimensions
to demonstrate the second-order accuracy in the L1-norm in the case of the solution of
PDEs with singular source terms. In the case of evaluating the contribution of singular
source terms on interfaces, the method is also second-order accurate in the L1-norm.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The use of regularized Heaviside and delta functions is ubiquitous in computational science and provide a systematic
framework to discretize source terms and to approximate discontinuous variables on irregular domains. For example, the
numerical approximations of the Heaviside and delta functions are widely used in the level set community to discretize
two-phase flow problems and to evaluate singular source terms such as surface tension forces, as introduced by Sussman
et al. [22] in the context of two-phase flows. Volume of fluid, Front Tracking, Immersed Boundary and Phase-Field methods
also use a smear-out approach where the discretization of the Heaviside and delta can be handy (see for example [26,2,7,15]
and the references therein). In addition, several hybridizations of numerical methods have been proposed, such as particle/
level set [5] and VOF/levelset [21], so that the use of numerical delta and Heaviside functions is omnipresent in computa-
tional science and engineering.

More precisely, consider an irregular domain X � Rd and its boundary C ¼ oX. Here, the sets are assumed to be repre-
sented through a level function / : Rd ! R as
X ¼ fx 2 Rdj/ðxÞ 6 0g;
C ¼ fx 2 Rdj/ðxÞ ¼ 0g:
We note that in the case where X and C are not described by a level function, as it is the case for front-tracking, volume of
fluid, or phase-field methods, a signed distance function to C can be constructed using any of the well-documented algo-
rithms, such as [17,14,19,13]. Therefore, our discretizations are not limited to level set methods.
. All rights reserved.
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Using this functional representation, one can compute integrals on irregular domains X or interfaces C as integrals on
regular domains as
Z

X
f dX ¼

Z
Rd

f ðxÞ � Hð/ðxÞÞdx;Z
C

f dC ¼
Z

Rd
f ðxÞ � dð/ðxÞÞ � krð/ðxÞÞkdx:
Several approximations of the one-dimensional delta and Heaviside functions have been proposed in the literature, see
[14,18] for a review. However, Tornberg and Engquist [23] pointed out that the standard approximations used in the level
set community may lead to erroneous results and provided an example where, even in the simple computation of the length
of a curve, the use of standard numerical delta functions could lead to non-convergent approximations. Later, Engquist et al.
[4] proposed first-order accurate discretizations of the Dirac delta function that removes the problem of convergence. We
note that they also proposed a second-order accurate discretization of delta, but that only two-dimensional results are pre-
sented, possibly because of its complexity. Also, leveraging on the work of Mayo [9] and building on the work of Calhoun and
Smereka [3], Smereka proposed first- and second-order accurate discretizations of the regularized delta function and pro-
posed numerical results using the computation of length and areas of irregular domains to demonstrate their accuracy
[20]. In this work, the discretization of the Dirac delta involves second-order derivatives of a level set function, which
may lead to numerical noise. Discretization of Dirac delta involving derivatives of functions can also be found in the work
of Towers [24,25]. We also note that the interesting work of Walén [27] addresses discretizations of Dirac delta, although
only treating the one-dimensional case. In Min and Gibou [12], we proposed a second-order accurate geometric approach
to the computation of length and area that is robust to the perturbations of the irregular domain’s boundary. However, this
work focused only on approximating integrals for computing lengths, areas and volumes of irregular domains and did not
provide explicit discretizations of Heaviside and delta functions.

In this paper, integrals over irregular domains are first converted to integrals over regular domains via the multi-dimen-
sional Heaviside and delta functions:
Z

X
f dX ¼

Z
Rd

f ðxÞ � HXðxÞdx and
Z

C
f dC ¼

Z
Rd

f ðxÞ � dCðxÞdx;
then, leveraging on the robust geometric integration of [12], we propose a direct discretizations di;j and Hi;j of the multi-
dimensional Heaviside and delta functions in two and three spatial dimensions such that:
Z

X
f dX ¼

X
i;j

Hi;j � fi;jDxDyþ OðDx2 þ Dy2Þ ð1Þ
and
 Z
C

f dC ¼
X

i;j

di;j � fi;jDxDyþ OðDx2 þ Dy2Þ: ð2Þ
We first consider discretizing the integrals over irregular domains. Then discretizations of the multi-dimensional Heav-
iside and delta functions will follow from the discretizations of Eqs. (1) and (2).

2. Geometric integration

In [10], an isosurfacing method was introduced to efficiently decompose the irregular domains X and C defined by the
level function / into simplices. Using the quadrature rules on simplices (triangles in 2D and tetrahedra in 3D), we proposed
in [12] an efficient and second-order accurate integration method. In addition, we showed that this method is robust to the
perturbation of the interface on the underlying grid. For the sake of clarity, we briefly review next the integration method.

On Cartesian grids, we assume that the level function / and the integrand f are sampled at grid nodes. Each grid cell can
be decomposed into simplices and the integrals can be evaluated as the sum over the simplices. It is enough then to consider
integration over one simplex, as described next.

2.1. Two spatial dimensions

Consider a triangle with vertices P1, P2 and P3, denoted DP0P1P2, to be an element in the decomposition of a two-dimen-
sional domain. We denote by /i and fi, the values of the level function and the integrand function on a vertex Pi. Whenever
/i/j < 0, there exists an interface point on the line segment PiPj, which we denote by Pij and approximated by linear
interpolation:
Pij ¼ Pi
/ðPjÞ

/ðPjÞ � /ðPiÞ
þ Pj

/ðPiÞ
/ðPiÞ � /ðPjÞ

:

Using the interface points, the intersections of the irregular domain X and interface C with the triangle are discretized as



9688 C. Min, F. Gibou / Journal of Computational Physics 227 (2008) 9686–9695
X \ DP0P1P2 ¼

DP0P1P2 if /0;/1;/2 < 0
DP0P1P02 [ DP12P1P02 if /0;/1 < 0 and /2 > 0
DP02P12P2 if /0 < 0 and /1;/2 > 0
; if /0;/1;/2 > 0

8>>><
>>>:
and
C \ DP0P1P2 ¼

; if /0;/1;/2 < 0
P02P12 if /0;/1 < 0 and /2 > 0
P02P01 if /0 < 0 and /1;/2 > 0
; if /0;/1;/2 > 0

8>>><
>>>:

;

as depicted in Fig. 1.
Note: Without loss of generality, we assumed that the values of /0, /1, and /2 were sorted with the negative signs first.

Note also that X \ DP0P1P2 and C \ DP0P1P2 are now the union of simplices. On each simplex of the irregular domains, one
can apply the midpoint quadrature rule to approximate the contribution of the integral of f over that simplex. For example, in
the case where /0;/1 < 0 and /2 > 0, we have:
Z

X\DP0P1P2

f dX ¼
Z

DP0P1P02

f dXþ
Z

DP12P1P02

f dX � 1
3
ðf ðP0Þ þ f ðP1Þ þ f ðP02ÞÞAðP0P1P02Þ

þ 1
3
ðf ðP12Þ þ f ðP1Þ þ f ðP02ÞÞAðP12P1P02Þ
and
 Z
C\P0P1P2

f dC ¼
Z

DP02

P12f dC � 1
2

f ðP02Þ þ f ðP12Þð ÞLðP02P12Þ;
where AðPiPjPkÞ and LðPiPjÞ denote the area of the triangle DPiPjPk and the length of the line segment PiPj, respectively. Since f
is only sampled on grid nodes, the unknown value f ðPijÞ is simply linearly interpolated as
f ðPijÞ ¼
fi/j � fj/i

/j � /i
:

The integrals above thus become:
Z
X\DP0P1P2

f dX � AðP0P1P02Þ
3

f0 þ f1 þ
f0/2 � f2/0

/2 � /0

� �
þ AðP12P1P02Þ

3
f1/2 � f2/1

/2 � /1
þ f1 þ

f0/2 � f2/0

/2 � /0

� �
and
 Z
C\DP0P1P2

f dC � LðP02P12Þ
2

f0/2 � f2/0

/2 � /0
þ f1/2 � f2/1

/2 � /1

� �
:

The above discretizations are linear polynomials with respect to the sampled function values f0, f1, and f2, which we write as
Z
X\DP0P1P2

f dX � f0H0 þ f1H1 þ f2H2;Z
C\DP0P1P2

f dC � f0d0 þ f1d1 þ f2d2;

ð3Þ
where the Hi’s and di’s are the coefficients of the linear polynomials fi’s. Note that these coefficients are functions of the six
arguments /0, /1, /2, P0, P1 and P2 and that the discretizations in (3) does not depend on the order of indexing of the vertices.
Therefore, once one of the coefficients, say H0ð/0;/1;/2; P0; P1; P2Þ, is known, the other coefficients directly follow it, i.e.:
Fig. 1. Decomposition of the frustrum P0P02P12P1 of a triangle P0P1P2 into two simplices P0P02P1 and P02P12P1.



Table 1
Formulas for the discretization of H0 and d0 in two spatial dimensions

/0 /1 /2 H0ð/0;/1;/2; P0; P1; P2Þ d0ð/0;/1;/2; P0; P1; P2Þ

� � � AðP0 P1P2Þ
3 0

� � + AðP0 P1P2Þ
3 � AðP02P12 P2Þ

3 � /2
/2�/0

LðP02 P12Þ
2 � /2

/2�/0

� + � AðP0 P1P2Þ
3 � AðP01P21 P1Þ

3 � /1
/1�/0

LðP01 P21Þ
2 � /1

/1�/0

� + + AðP01P02P0Þ
3 � ð1þ /2

/2�/0
þ /1

/1�/0
Þ LðP01 P02Þ

2 � ð /1
/1�/0

þ /2
/2�/0

Þ

Note that dð/Þ ¼ dð�/Þ and that Hð�/Þ ¼ AðP0 ; P1; P2Þ � Hð/Þ.
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H1ð/0;/1;/2; P0; P1; P2Þ ¼ H0ð/1;/0;/2; P1; P0; P2Þ
and
H2ð/0;/1;/2; P0; P1; P2Þ ¼ H0ð/2;/0;/1; P2; P0; P1Þ:
As a consequence, it is enough to derive formulas for H0 and d0, which we give in Table 1. These formulas depend on the sign
of the / since the combination of signs define the location and geometry of the domain and of the interface.

2.2. Extension to three spatial dimensions

The integration method presented above can be extended to three spatial dimensions in the same fashion by first trian-
gulating the grid into simplices. In this case, among the many possible decompositions, two choices are evident: each grid
cell can be decomposed in either five tetrahedra (the middle cut triangulation [16]) or into six tetrahedra (the Kuhn trian-
gulation [8]) as illustrated in Fig. 2. The advantage of the Kuhn triangulation is that it can be more easily extended to higher
spatial dimensions, as described in [10]. It is also a better choice if one needs to match triangulations between adjacent cells
[6]. The advantage of the middle cut triangulation is that the angles of the tetrahedra are less acute than those of the Kuhn
triangulation and that the total number of tetrahedra is less, which is preferable for computational efficiency. We choose the
middle cut triangulation since we do not need to consider interactions between adjacent cells and limit ourselves to two and
three spatial dimensions. The simplicity of this decomposition also translates to the simplicity of the method.

Then, given a tetrahedra DP0P1P2P3, the irregular domains X \ DP0P1P2P3 and C \ DP0P1P2P3 are decomposed into a dis-
joint union of tetrahedra and triangles, respectively, as depicted in Figs. 3 and 4. By using the midpoint quadrature rule on
tetrahedra and triangles, we obtain the following second-order accurate integration approximations:
Z

X\DP0P1P2P3

f dX � f0H0 þ f1H1 þ f2H2 þ f3H3;Z
C\DP0P1P2P3

f dC � f0d0 þ f1d1 þ f2d2 þ f3d3:

ð4Þ
Similarly to the two-dimensional case, the coefficients Hi’s and di’s are functions of the eight arguments /0, /1, /2, /3, P0, P1,
P2 and P3, and can be expressed as a function of each others. For example, one can define H1, H2 and H3 as
H1ð/0;/1;/2;/3; P0; P1; P2; P3Þ ¼ H0ð/1;/0;/2;/3; P1; P0; P2; P3Þ;
H2ð/0;/1;/2;/3; P0; P1; P2; P3Þ ¼ H0ð/2;/0;/1;/3; P2; P0; P1; P3Þ;
H3ð/0;/1;/2;/3; P0; P1; P2; P3Þ ¼ H0ð/3;/0;/1;/2; P3; P0; P1; P2Þ:
Table 2 presents the formula for H0 and d0 in three spatial dimensions.
Fig. 2. Middle cut triangulation (left) and Kuhn triangulation (right) of a three-dimensional grid cell.



Fig. 3. The three generic representations of the set S \X, where S is a simplex in three spatial dimensions (i.e. a tetrahedron): one tetrahedron (left) or the
union of three tetrahedra (center and right).

Fig. 4. Generic cases of the decomposition of S \ C, where S is a simplex in three spatial dimensions: S \ C � convðfPijj/ðPiÞ/ðPjÞ < 0gÞ.

Table 2
Formulas for the discretization of H0 in three spatial dimensions

/0 /1 /2 /3 H0ð/0 ;/1;/2;/3; P0; P1; P2; P3Þ d0ð/0;/1;/2;/3; P0; P1; P2; P3Þ

� � � � VðP0 P1 P2 P3Þ
4 0

� � � + VðP0 P1 P2 P3Þ
4 � VðP03 P13 P23 P3Þ

4
/3

/3�/0

AðP03 P13 P23Þ
3

/3
/3�/0

� � + � VðP0 P1 P2 P3Þ
4 � VðP02 P12 P2 P23Þ

4
/2

/2�/0

AðP02 P12 P23Þ
3

/2
/2�/0

� � + + VðP0 P02 P03 P13Þ
4 ð1þ /2

/2�/0
þ /3

/3�/0
Þ þ VðP0 P02 P1P13Þ

4 ð1þ /2
/2�/0

Þ þ VðP02P1 P12P13 Þ
4

/2
/2�/0

AðP02 P03 P13Þ
3 ð /2

/2�/0
þ /3

/3�/0
Þ þ AðP02P12 P13Þ

3
/2

/2�/0

� + � � VðP0 P1 P2 P3Þ
4 � VðP0 P1 P12 P13Þ

4
/1

/1�/0

AðP01 P12 P13Þ
3

/1
/1�/0

� + � + VðP0 P01 P03 P23Þ
4 ð1þ /1

/1�/0
þ /3

/3�/0
Þ þ VðP0 P01 P2P23Þ

4 ð1þ /1
/1�/0

Þ þ VðP01P12 P2P23 Þ
4

/1
/1�/0

AðP01 P03 P23Þ
3 ð /1

/1�/0
þ /3

/3�/0
Þ þ AðP01P12 P23Þ

3
/1

/1�/0

� + + � VðP0 P01 P02 P23Þ
4 ð1þ /1

/1�/0
þ /2

/2�/0
Þ þ VðP0 P01 P23 P3Þ

4 ð1þ /1
/1�/0

Þ þ VðP01P13 P23 P3Þ
4

/1
/1�/0

AðP01 P02 P23Þ
3 ð /1

/1�/0
þ /2

/2�/0
Þ þ AðP01P13 P23Þ

3
/1

/1�/0

� + + + VðP0 P01 P02 P03
4 Þð1þ /1

/1�/0
þ /2

/2�/0
Þ AðP01 P02 P03Þ

3 ð /1
/1�/0

þ /2
/2�/0

þ /3
/3�/0

Þ

Note that dð/Þ ¼ dð�/Þ and that Hð�/Þ ¼ VðP0; P1; P2; P3Þ � Hð/Þ.
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3. Discretization of the multi-dimensional Heaviside and delta functions

Eq. (1) gives a relationship between a discretization of the multi-dimensional Heaviside function and an approximation ofR
X f dX. Therefore, using the robust second-order accurate discretizations of

R
X f dX described in Section 2, we obtain a robust

second-order accurate discretization of the multi-dimensional Heaviside functions. Likewise, Eq. (2) gives a relationship be-
tween a discretization of the multi-dimensional delta function and an approximation of

R
C f dC. Therefore, a robust second-

order accurate of the delta function can be given in terms of the integration method of Section 2.

3.1. Two spatial dimensions

Consider a Cartesian grid with spacing Dx and Dy in the x- and y-direction, respectively. We use the standard notation of
xi ¼ iDx and yi ¼ iDy and we write:
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Z
X

f dX ¼
X

i;j

Z
X\½xi ;xiþ1 ��½yj ;yjþ1 �

f dx ¼
X

i;j

Z
X\DPijPiþ1;jPiþ1;jþ1

f dxþ
X

i;j

Z
X\DPijPi;jþ1Piþ1;jþ1

f dx:
Using the geometric integration of Section 2 on each term, we have:
Z
X

f dX �
X

i;j

fi;j H0ð/ij;/iþ1;j;/iþ1;jþ1; Pij; Piþ1;j; Piþ1;jþ1Þ
þfiþ1;j H1ð/ij;/iþ1;j;/iþ1;jþ1; Pij; Piþ1;j; Piþ1;jþ1Þ
þfiþ1;jþ1 H2ð/ij;/iþ1;j;/iþ1;jþ1; Pij; Piþ1;j; Piþ1;jþ1Þ
þfi;j H0ð/ij;/i;jþ1;/iþ1;jþ1; Pij; Pi;jþ1; Piþ1;jþ1Þ
þfi;jþ1 H1ð/ij;/i;jþ1;/iþ1;jþ1; Pij; Pi;jþ1; Piþ1;jþ1Þ
þfiþ1;jþ1 H2ð/ij;/i;jþ1;/iþ1;jþ1; Pij; Pi;jþ1; Piþ1;jþ1Þ

0
BBBBBBBB@

1
CCCCCCCCA
;

which we can write in terms of H0 as
Z
X

f dX �
X

i;j

fi;j H0ð/i;j;/iþ1;j;/iþ1;jþ1; Pi;j; Piþ1;j; Piþ1;jþ1Þ
þfiþ1;j H0ð/iþ1;j;/i;j;/iþ1;jþ1; Piþ1;j; Pi;j; Piþ1;jþ1Þ
þfiþ1;jþ1 H0ð/iþ1;jþ1;/i;j;/iþ1;j; Piþ1;jþ1; Pi;j; Piþ1;jÞ
fi;j H0ð/i;j;/iþ1;j;/iþ1;jþ1; Pi;j; Piþ1;j; Piþ1;jþ1Þ
þfi;jþ1 H0ð/i;jþ1;/i;j;/iþ1;jþ1; Pi;jþ1; Pi;j; Piþ1;jþ1Þ
þfiþ1;jþ1 H0ð/iþ1;jþ1;/i;j;/iþ1;j; Piþ1;jþ1; Pi;j; Piþ1;jÞ

0
BBBBBBBB@

1
CCCCCCCCA
Since in virtue of Eq. (1), the approximation of
R

X f dX is to be
P

i;jfijHijDxDy, we obtain the following second-order accu-
rate approximation of the multi-dimensional Heaviside function by collecting all the coefficients in front of fij:
Hi;j ¼ 1
DxDy

H0ðPi;j; Piþ1;j; Piþ1;jþ1; /i;j;/iþ1;j;/iþ1;jþ1Þ
þ H0ðPi;j; Pi;jþ1; Piþ1;jþ1; /i;j;/i;jþ1;/iþ1;jþ1Þ
þ H0ðPi;j; Pi�1;j; Pi�1;j�1; /i;j;/i�1;j;/i�1;j�1Þ
þ H0ðPi;j; Pi;j�1; Pi�1;j�1; /i;j;/i;j�1;/i�1;j�1Þ
þ H0ðPi;j; Piþ1;j; Pi;j�1; /i;j;/iþ1;j;/i;j�1Þ
þ H0ðPi;j; Pi�1;j; Pi;jþ1; /i;j;/i�1;j;/i;jþ1Þ

0
BBBBBBBB@

1
CCCCCCCCA
:

Similarly, using Eq. (2), we obtain the following second-order accurate discretization of the delta function:
di;j ¼ 1
DxDy

d0ðPi;j; Piþ1;j; Piþ1;jþ1; /i;j;/iþ1;j;/iþ1;jþ1Þ
þ d0ðPi;j; Pi;jþ1; Piþ1;jþ1; /i;j;/i;jþ1;/iþ1;jþ1Þ
þ d0ðPi;j; Pi�1;j; Pi�1;j�1; /i;j;/i�1;j;/i�1;j�1Þ
þ d0ðPi;j; Pi;j�1; Pi�1;j�1; /i;j;/i;j�1;/i�1;j�1Þ
þ d0ðPi;j; Piþ1;j; Pi;j�1; /i;j;/iþ1;j;/i;j�1Þ
þ d0ðPi;j; Pi�1;j; Pi;jþ1; /i;j;/i�1;j;/i;jþ1Þ

0
BBBBBBBB@

1
CCCCCCCCA
:

3.2. Three spatial dimensions

The previous discretizations can be extended to three spatial discretization in a straightforward manner: first, we eval-
uate the integrals

R
X f dX and

R
C f dC using the integration method described in Section 3. These formulas involve the con-

tribution of the 20 tetrahedra neighboring each grid node ði; j; kÞ (see Table 3). Then using formulas (1) and (2), one can define
the approximation of the multi-dimensional Heaviside and delta functions in three spatial dimensions as
Hi;j;k ¼ 1
DxDyDz

P
DPaPbPc Pd neighboring tetrahedron of ði;j;kÞ

H0ðPa; Pb; Pc; Pd;/a;/b;/c;/dÞ
and
di;j;k ¼ 1
DxDyDz

P
DPaPbPc Pd neighboring tetrahedron of ði;j;kÞ

d0ðPa; Pb; Pc; Pd;/a;/b;/c;/dÞ;
where the DPaPbPcPd’s are defined in Table 3.
4. Numerical examples

In this section, we provide numerical evidence that our method is second-order accurate in the L1-norm in two and three
spatial dimensions. Since the discretizations we propose in this paper are heavily based on the geometric integration of [12],



Table 3
List of the 20 tetrahedra DPaPbPcPd neighboring each vertex ði; j; kÞ

Pa Pb Pc Pd

ði; j; kÞ ðiþ 1; j; kÞ ði; jþ 1; kÞ ði; j; kþ 1Þ
ði; j; kÞ ðiþ 1; j; kÞ ði; j; k� 1Þ ði; j� 1; kÞ
ði; j; kÞ ði; j; k� 1Þ ði; jþ 1; kÞ ði� 1; j; kÞ
ði; j; kÞ ði; j� 1; kÞ ði� 1; j; kÞ ði; j; kþ 1Þ
ði; j; kÞ ði; j� 1; k� 1Þ ði� 1; j; k� 1Þ ði� 1; j� 1; kÞ
ði; j; kÞ ði; j� 1; k� 1Þ ði� 1; j; k� 1Þ ði; j; k� 1Þ
ði; j; kÞ ði; j� 1; k� 1Þ ði; j� 1; kÞ ði� 1; j� 1; kÞ
ði; j; kÞ ði� 1; j; kÞ ði� 1; j; k� 1Þ ði� 1; j� 1; kÞ
ði; j; kÞ ði� 1; j; kÞ ði� 1; jþ 1; kÞ ði� 1; j; kþ 1Þ
ði; j; kÞ ði; jþ 1; kþ 1Þ ði� 1; jþ 1; kÞ ði� 1; j; kþ 1Þ
ði; j; kÞ ði; jþ 1; kþ 1Þ ði� 1; jþ 1; kÞ ði; jþ 1; kÞ
ði; j; kÞ ði; jþ 1; kþ 1Þ ði; j; kþ 1Þ ði� 1; j; kþ 1Þ
ði; j; kÞ ðiþ 1; j� 1; kÞ ði; j� 1; kÞ ði; j� 1; kþ 1Þ
ði; j; kÞ ðiþ 1; j� 1; kÞ ðiþ 1; j; kþ 1Þ ði; j� 1; kþ 1Þ
ði; j; kÞ ðiþ 1; j� 1; kÞ ðiþ 1; j; kþ 1Þ ðiþ 1; j; kÞ
ði; j; kÞ ði; j; kþ 1Þ ðiþ 1; j; kþ 1Þ ði; j� 1; kþ 1Þ
ði; j; kÞ ðiþ 1; j; k� 1Þ ði; jþ 1; k� 1Þ ði; j; k� 1Þ
ði; j; kÞ ðiþ 1; j; k� 1Þ ði; jþ 1; k� 1Þ ðiþ 1; jþ 1; kÞ
ði; j; kÞ ðiþ 1; j; k� 1Þ ðiþ 1; j; kÞ ðiþ 1; jþ 1; kÞ
ði; j; kÞ ði; jþ 1; kÞ ði; jþ 1; k� 1Þ ðiþ 1; jþ 1; kÞ
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we do not provide examples demonstrating the robustness of the method but we stress that this method inherits from this
property, as demonstrated in [12]. In these examples h is the spacing between grid nodes.

4.1. Computing lengths and areas in two spatial dimensions

Consider an irregular domain X represented in the polar coordinates as r 6 1þ 1
2 cosð5hÞ with a corresponding level set

function /ðx; yÞ ¼ 2ðx2 þ y2Þ3 � 2ðx2 þ y2Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� ðx5 þ 5xy4 � 10x3y2Þ. We measure its area and arc length using the dis-

cretizations of Heaviside and delta function, respectively. The exact area is 9
8 p, and the arc length is approximately

12:329044714372 . . .. Table 4 demonstrates the second-order accuracy of our approach as we refine the grid.

4.2. Computing surfaces and volumes in three spatial dimensions

Consider an ellipsoid defined by x2

1:52 þ y2

:752 þ z2

:52 ¼ 1 on a computational domain ½�1:6;1:6� � ½�:8; :8� � ½�:6; :6�. Its surface
area is approximately 9:901821 � � � and its volume is 3

4 p, as detailed in [20]. Table 5 demonstrates second-order accuracy of
our method when computing its surface area and volume using our discretizations of the Heaviside and the delta functions.

4.3. Evaluation of source terms on irregular domain

In the case of the computation of lengths, areas and volumes, the integrand is identically equal to one, so the domain of
definition of the integrand is irrelevant. In the case of evaluating singular source terms, the integrand may not be constant
and may be defined only in the interior of the irregular domain. In this example, we show that a simple extrapolation of the
integrand allow to define it at all grid points near the interface; and subsequent use of our approximation of the delta Dirac
function produces second-order accuracy in the L1-norm: consider a domain X to be the unit circle with center (0,0) and a
quantity f ðx; yÞ ¼ e�x2�y2 defined only inside this irregular domain. Outside the domain, we take f ðx; yÞ ¼ 0. The integral valueR

X f ¼ pð1� 1=eÞ is approximated by our discretization of the multi-dimensional Heaviside function after extrapolating qua-
dratically f using method described in [1,13]. Fig. 5 depicts the contours of f ðx; yÞ before and after the extrapolation. Table 6
demonstrates second-order accuracy in the L1-norm (see Fig. 6).
Table 4
Convergence analysis in computing the area and arc length of the irregular domain defined by r 6 1þ 1

2 cosð5hÞ using the proposed Heaviside and delta
functions

Dx ¼ Dy kA� Ahk1 Rate kL� Lhk1 Rate

0.15 9:02� 10�2 4:29� 10�1

0.075 2:31� 10�2 1.97 1:35� 10�1 1.67
0.0375 5:35� 10�3 2.11 3:32� 10�2 2.02
0.01875 1:35� 10�3 1.99 6:71� 10�3 2.31
0.009375 3:31� 10�4 2.03 1:48� 10�3 2.19



Table 5
Convergence analysis in computing the volume and the surface area of an ellipsoid using the proposed Heaviside and delta functions

Dx ¼ Dy ¼ Dz kV � Vhk1 Rate kS� Shk1 Rate

0.2 1:44� 10�1 3:14� 10�1

0.1 3:66� 10�2 1.98 7:85� 10�2 2.00
0.05 9:16� 10�3 1.99 1:95� 10�2 2.00
0.025 2:29� 10�3 2.00 4:89� 10�3 2.00
0.0125 5:72� 10�4 2.00 1:22� 10�3 2.00

Fig. 5. Contours of f ðx; yÞ before (left) and after (right) the quadratic extrapolation of example 4.3. The red contour represents the domain’s boundary oX.

Table 6
Convergence analysis in computing the integral of Example 4.3

Dx ¼ Dy jjI � Ihjj1 Rate

0.125 8:69� 10�2

0.0625 1:28� 10�2 2.76
0.03125 2:59� 10�3 2.30
0.015625 6:35� 10�4 2.02
0.0078125 1:56� 10�4 2.02

Fig. 6. Evolution of the solution to the heat equation with singular source term of Section 4.5. From left to right and top to bottom, t ¼ 0, t ¼ :039, t ¼ :078
and t ¼ :125 demonstrating a kink in the solution on C.
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4.4. Poisson equation with a singular source term

Consider the Poisson equation studied in [4].
� DuðxÞ ¼ dCðxÞ in X;

uðxÞ ¼ 1� ln 2jxjð Þ
2

on oX;
where X ¼ ½�1;1� � ½�1;1� and C ¼ fx 2 R2jjxj ¼ 1
2g. The equation has the following solution:



Table 7
Accuracy of the Poisson problem 4.4. The exact solution has a kink at the interface C

Grid ku� uhk1 Rate ku� uhk1 in ~X2Dx Rate ku� uhk1 in ~X:2 Rate jju� uhjj1 Rate

322 7:35� 10�3 8:18� 10�4 4:14� 10�4 3:09� 10�4

642 3:02� 10�3 1.27 4:43� 10�4 0.88 9:93� 10�5 2.06 8:07� 10�5 1.93
1282 2:53� 10�3 0.26 1:91� 10�4 1.21 2:46� 10�5 2.00 2:25� 10�5 1.84
2562 1:22� 10�3 1.05 7:98� 10�5 1.25 6:39� 10�6 1.94 5:83� 10�6 1.94
5122 6:78� 10�4 0.84 3:17� 10�5 1.32 1:59� 10�6 2.00 1:51� 10�6 1.94
10242 3:36� 10�4 1.01 1:31� 10�5 1.27 4:03� 10�7 1.98 3:78� 10�7 1.99

Table 8
Accuracy of the heat equation problem 4.5 at t ¼ 0:125

Grid ku� uhk1 Rate ku� uhk1 in ~X2Dx Rate ku� uhk1 in ~X:2 Rate ku� uhk1 Rate

322 2:76� 10�2 2:76� 10�2 2:76� 10�2 1:05� 10�2

642 6:52� 10�3 2.08 6:52� 10�3 2.08 6:52� 10�3 2.08 2:57� 10�3 2.03
1282 1:83� 10�3 1.82 1:60� 10�3 2.02 1:60� 10�3 2.02 6:46� 10�3 1.99
2562 6:03� 10�4 1.60 4:00� 10�4 2.00 4:00� 10�4 2.00 1:62� 10�4 1.99
5122 2:62� 10�4 1.20 1:19� 10�5 1.74 9:97� 10�5 2.00 4:07� 10�4 1.99
10242 1:10� 10�4 1.24 3:96� 10�5 1.58 2:49� 10�5 2.00 1:02� 10�5 1.99

The exact solution has a kink at the interface C.

9694 C. Min, F. Gibou / Journal of Computational Physics 227 (2008) 9686–9695
uðxÞ ¼
1 if jxj 6 1

2

1� lnð2jxjÞ
2 if jxjP 1

2

(
:

On a uniform grid, we discretize the Laplace operator with standard central finite differences and the multi-dimensional del-
ta function dC with the method presented above. We follow the notation of [23] and define ~Xb ¼ fx : x 2 X; jdðC;xÞj > bg.
Table 7 shows that our discretization produces results that are second-order accurate in the L1 norm and first-order accurate
in the L1 norm with the expected drop in accuracy near the interface since the solution presents a kink. Table 7 also dem-
onstrates second-order accuracy in the L1 norm when the accuracy is computed away from the interface, i.e. we take b > 0:2
as in [4].

We note that a finite volume approach for discretizing the PDE would be more consistent with our derivation of the delta
and Heaviside functions, but we seek to demonstrate that our discretizations can easily be applied in a finite difference
setting.

4.5. Heat equation with a singular source term

Consider the following PDE:
ut ¼ Duþ dC in X;

uðx; tÞ ¼ 1� ln 2jxjð Þ
2

on oX;

uðx;0Þ ¼ 1� ln 2jxjð Þ
2

in X;
where X ¼ ½�1;1� � ½�1;1� and C ¼ fx 2 R2jjxj ¼ 1
2g. The equation has the following solution:
uðx; tÞ ¼
e�2p2t sinðpxÞ sinðpyÞ þ 1 if jxj 6 1

2

e�2p2t sinðpxÞ sinðpyÞ þ 1� lnð2jxjÞ
2 if jxjP 1

2

(
:

On a uniform grid, we discretize the time derivative with the Crank–Nicolson method, the Laplace operator with standard
central finite differences, and the multi-dimensional delta function dC with our method.

Table 8 shows that our discretization produces second-order accurate results in the L1 norm first-order accurate solution
in the L1 norm. Table 8 also demonstrates that the solution is second-order accurate in the L1 norm if one excludes the
nodes near the singularity.

5. Conclusion

We have introduced a second-order accurate method for the discretization of the multi-dimensional Heaviside and delta
functions on irregular domains in two and three spatial dimensions and have provided numerical examples to illustrate the
accuracy. This method leverages on geometric integrations that are robust to the perturbation of the interface’s location on
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the grid and therefore naturally inherits this property. We use a level set function for the description of the irregular do-
main’s boundary but this approach is not limited to level set simulations since distance functions can be readily constructed
from any representation of irregular domains. The discretizations only depend on the level function and not on its deriva-
tives, and are therefore robust to numerical noise. In addition, since our discretizations are cell-based, they can be trivially
extended to unstructured grids as in [10–12]. We have also presented examples of partial differential equations with singu-
lar source terms and showed that the direct discretization of the singular source term together with standard finite differ-
ences lead second-order accuracy in the L1 norm, first-order accuracy in L1 in the whole domain, and second-order accuracy
in L1 away from the support of the singular source.
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